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PARTIALLY OBSERVE

Wendell H. Fleming

Division of Applied Mathematics

Brown University

Providence, R.I. 02912 U.S.A.

1. Introduction.

In this paper we are concerned with the existence
of optimal controls for problems of the following
kind. Let Xt denote the process which we wish to

control, Yt the observation process and Ut the

control process, 0 <t < T, with T fixed. The
state and observation processes are governed by
stochastic differential equations

ax, = b(t,X ,Y,,U )at + o(c,xt,yt)dwt

(a) ax, e e ™
(b) ay, = h(t,xt)dt +aw, .

(GEED)

xt has values in N-dimensional Ry, Yt valaes in

v
Rl, and Ut values in < R .

complications are involved if vector-valued ob-
servations Yt are considered. ] XO has given

[Only some notational

distribution, with density po(x), and Y, = 0. In

(1.EY. Wt and Wt are independent Wiener processes.

The problem is to minimize a criterion of the
form

T
J = J F(t,X _,U )at + G(X_ )>. (1=22)
RSN X

It is customary to require that Ut be measurable

with respect to the U-algebra generated by observa-
tions Ys, () <s < t. We call this the strict sense

version of the problem. For several years the
question of proving a general theorem about existence
of optimal controls in the strict sense has been open.
We do not obtain such a result here. However, we
obtain an existence theorem in which a somewhat wider
class of control processes is admitted. Roughly
speaking, this wider class of controls is obtained as

follows. Let

i 1 (t2 :
Zt = exp Joh(s,xs)dYs -3 foh (s,Xs)ds . (1.3)

Then wt’Yt are independent Wiener processes under

o
a new probability measure P  related to the original
L. -Z In the wide

probability measure P by & pe
sense formulation we wish to require merely that Us

s < t be independent of future incre§ents

for
t = P < r with respect to In

Yr - Yp for

§2 we give a precise formulation of this idea, in
which we define the control as the joint distribution

measure of the processes Y,U.

Our method depends on introducing another
stochastic control problem, which we call a
"separated" problem. This separated problem is

D STOCHASTIC

CONTROL SYSTEMS

Etienne Pardoux
IRIA-Laboria

B.P. 105 78150 Le Chesnay
France

equivalent to the one formulated in $2. In the
separated problem the "state" p(t,*) at time t
function obeying a linear, parabolic partial differ-
ential equation (3.4). The coefficients of (3.4)
depend on the observations Yt and controls Ut'

0 <t <T. The solution p(t,x) is related in a
simple way to the unnormalized conditional density
q(t,x) of Xt’ given observations Ys and controls

U, for s < t. See (3.6). The proof of this fact
makes use of probabilistic solutions to a "backward"
partial differential equation adjoint to the
"forward" equation (3.4), an idea already exploited
in [3] for the nonlinear filter problem. However,
unlike [3] we work with (3.4) instead of the Zakai
equation (3.7) for q. In this way, Itd stochastic

integrals and results about stochastic PDE's are
avoided in the analysis. For the nonlinear filter
problem, equation (3.%) was derived by Davis [1]

is a

2. Formulation of the problem.

We make the following assumptions about the func-
tions b,0,h in (1.1).

(A]) © and its partial derivatives ao/axJ,
J=1,...,N, are bounded, continuous functions of
(t,x,y). Moreover, 0 has an inverse 0~1, which is a
bounded function of (t,x,y).

(A2) b(t,x,y,u) = bo(t,x,y) + ubl(t,x,y), where
bo and bl
(t,x,7).

2
(A3) h,3h/3t,3h/3xi,3 h/3xi3xJ

are bounded, continuous functions.

are bounded, continuous functions of

LT (R [

We also assume:

(Ah) 74

(AS)

is a convex, compact subset of RU.
The density po(x) of XO is in L2(RN),
; 2
and | x| po(x)dx < o for some £ > 1.
% 4
R

We formulate the problem on the "cancnical"
sample space

Q = c([0,T];RY) x c([0,7];RY) x 13([0,1); %),

whose elements W satisfy

w(t) = (X (w),Y (W)U (@), O<t<T.
We give C([0,T1;8%) for a = 1,N the usual norm
topology; and we give L°([0,T];%) the weak
topology, which is metrizable since % 1is compact.
We consider the following increasing families of
O-algebras:
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L Definition. - An admissible control is a probabil%éy
- measure T on (9, 9%) such that Yt el i
Wiener process.

Let ¥ denote the set of all admissible controls
T. Each T € ¥ determines the joint distribution
measure Pp of (X,Y,U) as follows. Given

Y €([0,T);8) and U € 13([0,71;%) 1et P°U be

the unique probability measure on (Q,_?%) such that
ot L the solution to the martingale problem [6]

associated with (1.1)(a), and

PU(x €e3) = | py(x)ax
0 0
B
for all Borel B < RN. Let
< =¥ z \
P (dxX,dY,qu)= P > (ax)mw(ay,du),
and define P~IT by
dPn
l} =12 (2n1)
ap P
n
with ZT as in (1.3). It can be shown that there

exist independent P, Wiener processes Wt and wt

such that (1.1) holds Pp-almost surely.

o
Let us write E[,E; for expectations with respect
o
Then (1.2) becomes

P
J(T) = E; JOF(t,Xt,U:)dt 4 G(XTE}.

We make the following assumptions about F and G.

to Pn’Pn respectively.

(2.2)

(A6) F,G are measurable. For fixed (t,x),
F(t,x,+) 1is continuous and convex on For some
C, B > 0,

m
0 < F(t,x,u) < C(1+|x|)
0 < G(x) < c(1+]x|)™.

In (AS) we take £ > m, which implies that

J(T) <, "t

Our result about existence of an optimal control
is:

Theorem. There exists 7" € % such that J(™) <
J(T) for all T €

In §'s 3,4 we indicate the method of proof. A
Py detailed proof will be given elsewhere.

The projection of any T € ¥ wunder (Y,U) > Y
is Wiener measure y on C([0,T];Rl). Let

NY(dU) be a regular conditional distribution for U
b2 given Y. We call T admissible in the strict sense
ﬁ if T€ ¥ and 7™ 4g a Dirac measure, concentrated
i at a point U(Y) € La(xo,T];ﬁk), u-almost surely. It

can be shown that J(T) equals the infimum of

T
L

i

P e P P e P e PO m

J(T) among strict sense admissible controls; but it
has not been shown that a strict sense optimal con-
trol exists. By admitting wider sense controls T € ¥,
we in effect allow the control Ut to depend on

auxiliary randomizations in addition to the observa-
tions YS for 8 < t.

3. The filtering equations.
£ eql

Given trajectories Y and U for the observation
and control processes, consider the elliptic partial
differential operators associated with (1.1)(a):

N 2
1 3
L, =% L a, 6 s—=—+D1-7, {z4)
1 i 19 Bxiaxj
where a = 00 and V is the gradient in x. Let
N N
9 dh 3
L, =L -Y } [ 1 a, ———J-——— i (3.2)
t t i i=1(3=1 C] axJ axi
2
o %0 3h -
e(t,x) = 3 Y. (aVh,Vh) - Y (37 + L,h) - 5 . (3.3)
Let p(t,x) be the unique solution in
LZ({O,T];Hl) n c([0,7];8") to the partial differential
equation
v
3 _ i
3¢ = (L) P+ e(t,x)p (3.4)

with p(0,x) = po’x;. The following key formula can be

proved. Given T € ¥, then for every bounded con-
tinuous f
o
J p(t,x)exp[Y h(t,x)]f(x)dx = E
RN E

T-almost surely. The proof involves the backward
partial differential equation adjoint to (3.4), to
whose solutions an appropriate version of the Feynman-
Kac formula is applied.

Let

q(t,x) = p(t,x)exp[Yth(t,x)]. (3.6)

Equation (3.5) implies that q(t,x) is the unnormal-
ized conditional density of Xt given 9@ (in other
words, given past observations and controls Ys’ U

for s < )
Zakai equation

s
It can be shown that q satisfies the

Beix ™ & v

% (Lt) q + hant (3.7

with q(0,x) = po(x). The conditional density of X,
given yt is

alt,x) = alkax) (3.8)

qdx

By

L, A separated control problem.

A well known idea is to introduce the conditional
distribution of a partially observed state X  as the
"state" in a new "separated" control problem. This
idea is the key to the classical sevaration princiole

12 o ’ 1
-~ S |




for linear-quadratic problems [2, Chap. VI.11].
Similar ideas occur in the control of partially ob-
served Markov chains [5] and of jump processes [L].

In the present context, we may take p(t,:) as

the §ta:e at time t in a separated problem, since the
conditional distributions of Xt are determined from
p(t,*) through (3.6) and (3.8). The dynamics of the
sta}e process in the separated control problem are
(3.4). Both e and the coefficients of

{t depend on trajectories

servation and control processes. Let

Y and U for the ob-

Q = c([0,T];RY) x t3(fo,1]; %)
For each (Y,U) € Q =priY 4 i i
h sU) € Q, p=p is the unique solution
to (3.4) with the given initial data p(0,x) = p(x)
qY,U

In (3.6) we also write q = for the unnormal-
ized conditional density. From (2.1) and elementary
properties of conditional expectations with respect

to gn and 31, (2.2) can be rewritten as

Vi . R T 11 y

T) _J J | r(t,x,bt)q *“(t,x)dxdt
Q'LO N

+ J G(x)qY’U(T,x)dx am,
¥

The separated problem is to show that there exists

*
T € % minimizing (4.1). Once this is shown, the
Theorem in §2 follows immediately.

The proof of existence of n* proceeds as
follows. Let "n be any minimizing sequence in ¥.

The sequence of probability measures "n is tight,

and hence a subsequence converges weakly to a limit
* »
M . Moreover, ™ € %. Finally, it is shown that

J(ﬂ') < lim J(“n);
n—uﬂ

the proof depends on linearity of b and convexity
of F in the control variable u (see assumptions
(A2), (A6) in §2.) as well a3 results from PDE about

continuous dependence on Y,U of solutions pY’U to

P (3.4).
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